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*e concept of Sustainable Development has given rise to multiple interpretations. In this article, it is proposed that Sustainable
Development should be interpreted as the capacity of territory, community, or landscape to conserve the notion of well-being that
its population has agreed upon. To see the implications of this interpretation, a Brander and Taylor model, to evaluate the
implications that extractivist policies have over an isolated community and cooperating communities, is proposed. For an isolated
community and through a bifurcation analysis in which the Hopf bifurcation and the heteroclinic cycle bifurcation are detected, 4
prospective scenarios are found, but only one is sustainable under different extraction policies. In the case of cooperation, the
exchange between communities is considered by coupling two models such as the one defined for the isolated community, with
the condition that their transfers of renewable resources involve conservation policies. Since human decisions do not occur in a
continuum, but rather through jumps, the mathematical model of cooperation used is a Filippov System, in which the dynamics
could involve two switching manifolds of codimension one and one switching manifold of codimension two.*e exchange in the
cooperation model, for specific parameter arrangements, exhibits n-periodic orbits and chaos. It is notable that, in the cases in
which the system shows sliding, it could be interpreted as a recovery delay related to the time needed by the deficit community to
recover, until its dependence on the other community stops. It is concluded (1) that a sustainability analysis depends on the way
well-being is defined because every definition of well-being is not necessarily sustainable, (2) that sustainability can be visualized as
invariant sets in the nonzero region of the space of states (equilibrium points, n-periodic orbits, and strange attractors), and (3)
that exchange is key to the prevalence of the human being in time.*e results question us on whether Sustainable Development is
only to keep us alive or if it also implies doing it with dignity.

1. Introduction

Sustainable Development is a concept that has become
relevant [1] since due to the series of criticisms that had been
made regarding the global model of economic growth, which
put the survival of all living species on the planet at risk,
including the human being. Reports such as “Limits to
Growth” [2] warned about the capacity of the planet in the
face of the dynamics proposed from the socioeconomic
point of view to generate growth.

*e global impact of the concept did not lead to a ho-
mogeneous school of thought on Sustainable Development,
but to the establishment of families of conceptual positions
that tried to adapt the concept to their interpretations, as in
the case of corporate sustainability and environmental
sustainability, which made the word sustainability a suffix or
the Latin American case in which the language allowed the
differentiation between “sostenible” and “sustentable,” to
eradicate the economic character that the concept was taking
on political agendas or its interpretations that gave rise to
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weak/strong sustainability [3], to sustainable landscapes [4]
and to the widely recognized approach of Elkington [5], and
the triple bottom line is sustainability from social, economic,
and environmental dimensions.

*e interpretationmade in this article of the definition of
Sustainable Development proposed by [1]: “satisfying
present needs without compromising the satisfaction of the
needs of future generations,” assumes (1) that the system of
needs is not a unique set, but is defined according to the
territory, landscape, or community and the ways of life in
them, (2) that the system of needs does not have important
changes from one generation to another, (3) that satisfying
needs has the purpose of generating well-being, and (4) that
this well-being must exist for this generation and any future
generation. In this sense, sustainability is an emerging ex-
pression of the territory, landscape, or community, which
results from the interactions of its socio-ecological com-
ponents, so its analysis must be carried out according to
systemic and dynamic form [6]. In this article, then, it will be
said that a territory, landscape, or community is sustainable
if the notion of well-being that its population has agreed
upon is a conservation law and symmetry of time, in the
nonnegative region of the space of states.

*is interpretation has different implications: (1) if the
system of needs depends on the territory, landscape, or
community and their ways of life, there cannot be a single
sustainability, but there are sustainabilities, (2) if the system
of needs can go from one generation to another without
important changes, it is because the way in which it is
defined has prioritized what is really important, whatever
that means, (3) the set of all definitions that could be
proposed for well-being would not necessarily lead to
Sustainable Development because many of them will only be
valid in the short term, and (4) restricting sustainability to
the economic, social, and environmental dimensions is
insufficient to capture the complexity of a definition of well-
being that can be perpetuated over time as well as fallacious
environmental, social, and economic sustainability consid-
erations that ignore the interdependence that exists between
these dimensions and others to make socio-ecological sys-
tems viable in the long term.

But the most important implication about well-being, as a
conservation law, is that in Sustainable Development well-
being cannot increase or decrease, unless there are exchanges
of information, matter, and energy from one territory,
landscape, or community to another, which is completely
contrary to the case in which a territory is eroded to guarantee
the well-being of another, without compensation for the
resources taken being sufficient for its recovery.

Here we study the case in which two socio-ecological
systems have exchanges, constituting a new socio-ecological
system on which it is not clear how these exchanges will
determine their sustainability. In this sense, the purpose of
this article is to present the first approach to the study of
exchanges between territories, landscapes, and communities
within the framework of Sustainable Development from
discontinuous piecewise smooth systems and explain the
implications of this approach for two communities, based on
the analysis of their dynamic behavior.

Due to it is the first approximation, the mathematical
model has variables that define a very simple notion of well-
being, based on populations and available renewable re-
sources, with which it will seek to demonstrate the con-
servation of well-being.

*e mathematical model used for this purpose is a
Filippov system [7, 8]. *e choice of this type of system
resides in the fact that human decisions do not necessarily
occur continuously, but rather through jumps defined by
ranges of tolerance to events.

For an introduction to Filippov’s systems, see [9–13]. An
equivalent formulation in part is found in [14]. For a review
of piecewise linear systems, it can be reviewed [15–18].
Regarding the limit cycles in Filippov’s systems, it is rec-
ommended to review [19]. On the bifurcations of these
systems, there are articles from [20–26], together with more
specialized articles such as [27–29] for periodic orbits,
[30, 31] for sliding bifurcations or the Hopf bifurcation
compendium of [32]. Other topics that may be of interest are
the numerical aspects of the solution of these differential
systems [33, 34] or stochastic perturbations to periodic
orbits with sliding [35, 36].

On the applications of Filippov systems, the works have
been mainly oriented to friction oscillators [31, 37–41],
neural networks activated by discontinuous functions
[42–46], memristor-based neural networks [47–53], neural
networks with switching control using the Filippov system
with delay [54–57], and electronic converters [58]. On issues
related to Sustainable Development, the number of papers is
much more limited, with approaches from the analysis of
communities [59], from the analysis of companies [60] and
others that touch on close issues such as energy systems
[61–64], pest or disease control [65–67], HIV behavior
[68, 69], behavior longterm communities [70], or com-
munications security [71]. It is also worth mentioning a
novel approach to the study of systems using multiple
switching regions that have been proposed in [72].

For the simulation, tools such as SLIDECONT [73] or
smooth solvers [74] have been developed for the analysis of
sliding bifurcation of Filippov systems. Numerical contin-
uation methods of these systems have also been proposed
[41]. More recently there is the TC-hat software from [75],
COCO [76], and MAMBO [77].

*e rest of the paper is structured as follows. After this
introductory section, two sections are presented in which (1)
the effect of the variation of the extraction capacities in an
isolated community is modeled and simulated, using a two-
dimensional continuous model, see Section 2, and (2) the
effect of the exchange of resources between two communities,
based on a Filippov system, see Section 3. In these models,
seeking to have a first approximation of sustainability as
conservation of the well-being of territory, landscape, or
community, it is assumed that well-being is having renewable
resources, which oversimplifies a plausible definition of well-
being, but allows the presentation of the possibilities of this
interpretation of sustainability, as will be seen in the discussion
of results’ sections, see Section 4, and of conclusions, see
Section 5. *e article ends with the proposal for future re-
search in this line of work, see Section 6.
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2. Effect of the Variation of the Extraction
Capacities in a Community

*emathematical model on which this article is based is the
one developed by Brander and Taylor [78], who presented a
general equilibrium model to represent the dynamic in-
teraction between renewable resources and population,
seeking to explain the case of Easter Island.

*e Brander and Taylor model has been modified by
authors to achieve a better approximation to modern sys-
tems of extraction and use of renewable resources, obtaining
differential systems of greater dimension and elaboration.
For example, multiple economic activities have been in-
corporated, adding to the extraction of resources and the
production of manufactured goods [79] or proposing ag-
riculture as a parallel and different activity to extraction [80].
Institutional adjustments and some economic structures of
property rights have also been included, which restrict the
conditions of extraction and consumption that could mit-
igate or dampen the cycles of abundance and famine [81, 82]
or the consideration of conservation policies that were based
on resource extraction charges [83].

Most of the models based on differential equations
emerged from the Brander and Taylor model as well as other
models of the same type that study the dynamic relationship
between population and resources and contemplated isolated
societies, without considering migrations or exchanges of
information, matter, or energy. However, one can findmodels
with differential equations that somehow incorporate this
coupling between societies. For example, in [84], a model is
presented that tries to capture the effect that migration has on
the degradation of natural resources; in [85], a model is used
to investigate the emergent effects of the movement of people,
goods, and natural resources, between two societies that have
characteristics similar to those of Easter Island; a different
coupling method is used in [86], where two new state vari-
ables are proposed: the capital inventory and a social de-
velopment index, for the construction of a dynamic migration
network between municipalities of a region in Colombia;
finally, in [87], a socio-ecological model of multiple human
populations is proposed, which exploit their natural resources
or that of another population when their own are scarce,
finding that the increase in interacting communities accel-
erates and aggravates the collapse.

*is article, in contrast to [87], studies the long-term
effect of economic cooperation between two communities,
for which a simplified version of [80] of the Brander and
Taylor model was used so that the extraction of resources is
considered as the only economic activity developed.

*e system of differential equations for the represen-
tation of the dynamics of an isolated community considers
that the population change is given by the extraction speed
that the population L has of its available renewable resources
S, from a per-capita extraction rate ϵ [85] and the minimum
per-capita caloric requirements σ of its population, in
consideration of a conversion factor from mass units of the
extracted resource to caloric units ϕ, while for the change in
available renewable resources S, it is assumed that the

renewable resource is regenerated if it is above the T limit
(strong growth effect), at a rate of ρ up to that reaches its
carrying capacity K (growth limit of the renewable re-
sources) and that depends on the mentioned extraction that
the population makes of the resources, as shown in the
following equation:

dL

dt
� ϕεLS − σL,

dS

dt
� ρS

S

T
− 1􏼒 􏼓 1 −

S

K
􏼒 􏼓 − εLS.

(1)

System (1) has 4 equilibrium points:

P1 � (0, 0),

P2 � (0, T),

P3 � (0, K),

P4 � −
ρ KTϵ2ϕ2 − Kϵϕσ − Tϵϕσ + σ2􏼐 􏼑

KTϕ2ϵ3
,
σ
ϵϕ

⎛⎝ ⎞⎠.

(2)

Following Figure 1, equilibrium P1 is always a stable
node, and P2 is always an unstable saddle-type node, making
the Allee effect considered for the resources in the model
remarkable. *e Allee effect occurs when the regeneration
rate slows down at low resource density [88].

When ε gradually increases, P3 and P4 collide in what is
called a branch point BP. In this collision, K � σ/Kϕ and
−ρ(KTϕ2ϵ2 − Kϕσϵ − Tϕσϵ + σ2)/ϕ2ϵ3KT � 0. When solv-
ing for ε, we found that BP occurs at εBP � σ/Kϕ, and if
ε< εBP population is negative and P4 is unstable while P3 is
stable, equilibrium population is positive and P4 becomes a
stable focus if ε> εBP until the Hopf bifurcation H is reached,
see Figure 1. To prove the existence of a Hopf bifurcation, we
define the Jacobian matrix as

J �

ϕεS − σ ϕεL

−εS −
KTεL − 2ρKS + KTρ + 3ρS

2
− 2ρTS

KT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)

whose eigenvalues are

λ1,2 �
1
2

TrJ ±
�����������

TrJ2 − 4DetJ
􏽱

􏼒 􏼓. (4)

TrJ corresponds to the trace of J and DetJ to its de-
terminant. When solving for ϵ, the trace evaluated at P4, we
find that a Hopf bifurcation occurs at ϵH � 2σ/(K + T)ϕ
since P4 has a pair of pure imaginary eigenvalues, satisfying
the equilibrium condition, giving rise to the instability of the
P4 focus. Furthermore, the system undergoes the Hopf
bifurcation as long as the real part of eigenvalues really
change sign by crossing zero. *e previous condition can be
proved by demonstrating that the cross speed of the real part
with respect to the control parameter is nonzero. Since
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(1/2)TrJ is the real part of the eigenvalues, the cross speed is
given by

d
dϵ

[Re(λ(ϵ))]ϵ�ϵH �
ϕρ(K + T)

3

8σKT
≠ 0, (5)

so that the transversality condition is satisfied. Finally,
according to the sign of the first Lyapunov coefficient,
l1 � −1.675825e − 07, and the Hopf bifurcation is super-
critical giving rise to a stable limit cycle [89]. Numerical
continuation of periodic orbits and detection of heteroclinic
bifurcation HTC were developed using MATCONT [90].

On the contrary, the nodes P3 and P4 collide at ε ≈ 0.3,
making the node P3, related to load capacity, go from stable
to unstable (chair type), while node P4 makes it from un-
stable to stable, for a positive increment of ϵ.

At ε ≈ 0.55 a Hopf bifurcation occurs, giving rise to the
instability of the P4 node, which becomes a repulsive node,

while an attractor limit cycle emerges, that becomes large,
for positive increases of ϵ, until in ϵ ≈ 0.7, it gives rise to
heteroclinic orbits between the nodes P2 and P3, forming a
heteroclinic cycle, from which the limit cycle disappears.

Note that, before the branch point BP, the amount of
resources extracted does not meet the population’s need,
leading to its disappearance. From BP and up to the Hopf
bifurcation H, the resources extracted are sufficient to
sustain a specific amount of population, gradually de-
creasing the support capacity of the system. Between H and
the heteroclinic bifurcation HTC, the population-resources
relationship enters into a dynamic of oscillation between
scarcity and abundance, which becomes critical when the
HTC is exceeded, at which time, followed by a moment at
maximum abundance, the population will grow so large that
it will critically deplete resources, leading to the collapse of
the population and its resources.
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Figure 1: Steady-state change for an isolated community when the per-capita extraction rate ϵ is taken as the control parameter. *e solid
line represents stable equilibrium points, and the dashed line represents unstable equilibrium points.*e shaded area represents limit cycles.
(a) Bifurcation diagram, (b) projection on ϵ-L plane, and (c) projection on ϵ-S plane. Parameter values for this simulation are σ � 0.14,
ϕ � 0.4, K � 12000, T � 700, and ρ � 0.03.
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3. Effect of Resource Exchange between
Two Communities

In this section, the dynamics of exchange between two
communities for the supply of their population’s needs are
considered, in which decision-makers are willing to enforce
rules on resource extraction, have a conservation policy, and
have a complete understanding of the socio-ecological
system that allows them to define clear extraction limits.

3.1. Exchange with Continuous Coupling. *e model for two
communities, see system (6), assumes that each population
keeps the proportion Ci, i � 1, 2, while exchanging the
proportion (1 − Ci) of the resources that produces but also
protects an amount equal to its unextracted resources to the
amount received by the exchange Si⟶j, i � 1, 2, i≠ j, in
caloric units:

dL1

dt
� C1ϕ1ε1L1S1 + 1 − C2( 􏼁ϕ2ε2L2S2 − σ1L1,

dS1
dt

� ρ1S1
S1
T1

− 1􏼠 􏼡 1 −
S1
K1

􏼠 􏼡 − ε1L1 S1 − S2⟶1( 􏼁,

dL2

dt
� C2ϕ2ε2L2S2 + 1 − C1( 􏼁ϕ1ε1L1S1 − σ2L2,

dS2

dt
� ρ2S2

S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ε2L2 S2 − S1⟶2( 􏼁.

(6)

*e resource conservation policy is given by equation
(7), which is a conversion factor between the resources of the
two communities:

Si⟶j �
1 − Ci( 􏼁ϕiϵiSi

ϕjϵj
. (7)

For simplicity, simulations have been carried out with
normalized Si, considering si � Si/Ki.

3.2. Exchange Rules between Communities. For the repre-
sentation of resources’ exchange rules between communi-
ties, it was considered that the exchange proportions Ci

depend on levels of resources that are defined for each
community, understanding that a level is a set of states of
available renewable resources, such that, if the level between
the communities is different, there is an exchange from the
community with greater resources to the community with
fewer resources, and if the level is the same, no exchanges are
made. *is representation implies that the exchange rates Ci

change according to the available level of resources that the
two communities have at each instant of time.

In this way, it is assumed that cooperation is a decision
that is made mutually under certain considerations related to
resource stocks, whose main objective is to mitigate the
overexploitation of natural resources of the needy community
(understand a needy community as one that has brought its
available renewable resources to a deficit threshold).

*e 4-dimensional space of states has two switching
regions Σi, i � 1, 2, each of which defines the decision change
limits, also defining two levels of available renewable re-
sources by community: deficit and surplus. Considering that
the communities would not be willing to have their levels
defined differently to avoid exposing their resources in the
exchange measures, it has been considered that the levels of
each community have the same thresholds.

3.3. Behavior with Exchange Rules through Filippov Systems.
To represent the rules defined above and taking into account
that they define a discontinuous system, we will now present
the formalism of Filippov’s systems [8] required to obtain
the differential system that models the exchange between
two communities.

3.3.1. Formalism of Filippov’s Systems. In Filippov systems
with a commutation surface, the state space is divided into
two regions R1 and R2 through a surface Σ, defined as the set
0 of a smooth scalar function h. *us, we have

_x � f(x) �
f1(x), x ∈ R1,

f2(x), x ∈ R2,
􏼨 , x(0) � x0 ∈ R

n
, (8)

where f1 and f2 are smooth vector fields. *e regions R1
and R2 and the surface Σ are defined as

R1 � x ∈ Rn
: h(x)> 0􏼈 􏼉,

R2 � x ∈ Rn
: h(x)< 0􏼈 􏼉,

Σ � x ∈ Rn
: h(x) � 0􏼈 􏼉.

(9)

In this case, the dynamics on Σ are classified in

(i) Sliding Region. Σ
∧

� x ∈ Rn: Lf1
h(x) · Lf2

h(x)􏽮

< 0,Lf1
h(x)< 0}, Σ

∧
⊂ Σ, when both vector fields

f1(x) and f2(x) point to Σ
(ii) Escaping Region. Σe � x ∈ Rn:{ Lf1

h(x) · Lf2
h(x)

< 0,Lf1
h(x)> 0}, Σe ⊂ Σ

(iii) Crossing Region. Σc � x ∈ Rn: Lf1
h(x) · Lf2

h􏽮

(x)> 0}, Σc ⊂ Σ

Here, Lf1,2
h(x): � ∇h(x) · f1,2(x) is defined as the Lie

derivative of h(x) with respect to the vector field f1,2. Once
the evolution of the system reaches the sliding surface, the
dynamics can be defined as a linear combination of the
vector fields (f1 and f2) through the Filippov formalism [8],
namely,

_x � fΣ(x), x ∈ Σ
∧

, (10)

where

fΣ � (1 − λ)f1(x) + λf2(x), (11)

and λ is the solution of

0 � ∇h(x)
T

· fΣ(x),

0 � h(x).

⎧⎨

⎩ (12)
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On the contrary, the trajectory of the system leaves the
sliding region as soon as the vector fields f1,2 become
tangent to Σ, that is, making λ � 0 and λ � 1, and we obtain
Lf1

h(x) � 0 or Lf2
h(x) � 0.

Now, if we consider a system with two commutation
surfaces Σ1 and Σ2, according to Filippov’s formalism, the
state space will be divided into four regions R1, R2, R3, and
R4:

R1: f1 for h1 > 0, h2 > 0,

R2: f2 for h1 < 0, h2 > 0,

R3: f3 for h1 < 0, h2 < 0,

R4: f4 for h1 > 0, h2 < 0.

(13)

In this case, the trajectories of the system can evolve in
any of thementioned regions as well as on the regions Σ1 and
Σ2. Additionally, the system can evolve on the commutation
surface of codimension two, defined by the intersection of
the two commutation surfaces of codimension one (i.e.,
Σ � Σ1 ∩Σ2):

Σ � x ∈ Rn
: h(x) � 0, h(x) �

h1(x)

h2(x)
􏼢 􏼣􏼨 􏼩. (14)

Now, the codimension 1 sliding vector fields are defined
as f±Σ with respect to each switching surface Σ±1,2, i.e.,

_x � fΣ+1
� 1 − λ1( 􏼁f1(x) + λ1f4(x), λ1 �

Lf1
h1(x)

Lf1−f4
h1(x)

,

_x � fΣ−1
� 1 − λ2( 􏼁f2(x) + λ2f3(x), λ2 �

Lf2
h1(x)

Lf2−f3
h1(x)

,

_x � fΣ+2
� 1 − λ3( 􏼁f1(x) + λ3f2(x), λ3 �

Lf1
h2(x)

Lf1−f2
h2(x)

,

_x � fΣ−2
� 1 − λ4( 􏼁f3(x) + λ4f4(x), λ4 �

Lf3
h2(x)

Lf3−f4
h2(x)

.

(15)

If a path is followed on one of the sliding surfaces 􏽐
±
1,2,

the attractiveness can be characterized according to the first-
order output conditions (tangency conditions). Whenever
λ1,2,3,4 � 0 and λ1,2,3,4 � 1, the exit conditions of the first
order are expressed by

Lf1
h1(x) � 0,

Lf2
h1(x) � 0,

Lf1
h2(x) � 0,

Lf2
h2(x) � 0,

Lf3
h1(x) � 0,

Lf4
h1(x) � 0,

Lf3
h2(x) � 0,

Lf4
h2(x) � 0.

(16)

*e vector field of sliding on the commutation surface Σ
can be defined through the convexmethod of Filippov [8]. In
this way, the dynamics on Σ are

FΣ(x) � 􏽘
4

i�1
λi(x)fi(x), (17)

where

λi(x)≥ 0∧ 􏽘

4

i�1
λi(x) � 1, (18)

taking into account that FΣ(x) must be tangent to Σ, that is,
LFΣ

hi(x) � 0, i � 1, 2. Clearly, it can be seen from the above
that there is no single solution for the coefficients λi(x) since
we now have a system of three equations with four un-
knowns. In the literature, two systematic methods allow
defining the codimension 2 sliding vector field under certain
conditions, the bilinear combination [91] and the method
calledmoments of solutions [92] although the ambiguity that
arises when considering multiple switching surfaces remains
a problem under study. A nonlinear formulation of the
sliding vector field called hidden dynamics is proposed in
[93], which has been effective in modeling real mechanical
phenomena such as friction.

*e bilinear interpolation method was originally in-
troduced by Seidman [91] and further studied in [92]. *e
idea is to obtain a vector field on the intersection by forming
a bilinear interpolation among the four vector fields:

fB≔ (1−α
∧
)(1−β

∧
)f1 +(1−α

∧
)β
∧
f2 +α
∧
(1− β
∧
)f3 +α

∧
β
∧
f4,

(19)

where α
∧
and β
∧
are smooth functions of x ∈ Σ, between

[0, 1]. Under the orthogonality conditions (LFB
(h1)(x) �

LFB
(h2)(x) � 0), α

∧
and β
∧
can be found by solving the

following nonlinear system equations:

(1 − α
∧

)(1 − β
∧

)
Lf1

h1

Lf1
h2

⎡⎣ ⎤⎦ +(1 − α
∧

)β
∧ Lf2

h1

Lf2
h2

⎡⎣ ⎤⎦

+ α
∧

(1 − β
∧

)
Lf3

h1

Lf3
h2

⎡⎣ ⎤⎦ + α
∧
β
∧ Lf4

h1

Lf4
h2

⎡⎣ ⎤⎦ � 0.

(20)

Assuming that we are following a trajectory on Σ, the
second-order conditions are defined by

Lf
􏽘

+

1

h1(x) � 0,

Lf
􏽘

−

1

h1(x) � 0,

Lf
􏽘

+

2

h2(x) � 0,

Lf
􏽘

−

2

h2(x) � 0.

(21)

3.3.2. Filippov System Model. *e variation in the exchange
rates of each community is assumed according to the fol-
lowing rule:
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C1 �
C

+
1 , if h1 > 0,

C
−
1 , if h1 < 0,

⎧⎨

⎩

C2 �
C

+
2 , if h2 > 0,

C
−
2 , if h2 < 0.

⎧⎨

⎩

(22)

Based on the Filippov formalism, the dynamics of re-
source exchange between two communities can be rewritten
in state space by making x � [L1, S1, L2, S2]

T, h1 � S1 − αT,
and h2 � S2 − αT, αT being the decision threshold for both
communities, that is,

_x � f(x) �

f1(x), x ∈ R1

f2(x), x ∈ R2

f3(x), x ∈ R3

f4(x), x ∈ R4

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, x(0) � x0 ∈ R
4
, (23)

where

f1(x) �

C
+
1ϕ1ϵ1L1S1 − σ1L1 + 1 − C

+
2( 􏼁ϕ2ϵ2L2S2

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
+
2ϕ2ϵ2L2S2 − σ2L2 + 1 − C

+
1( 􏼁ϕ1ϵ1L1S1

ρ2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡S2 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

f2(x) �

C
−
1ϕ1ϵ1L1S1 + 1 − C

+
2( 􏼁ϕ2ϵ2L2S2 − σ1L1

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
+
2ϕ2ϵ2L2S2 + 1 − C

−
1( 􏼁ϕ1ϵ1L1S1 − σ2L2

ρ2S2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

f3(x) �

C
−
1ϕ1ϵ1L1S1 + 1 − C

−
2( 􏼁ϕ2ϵ2L2S2 − σ1L1

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
−
2ϕ2ϵ2L2S2 + 1 − C

−
1( 􏼁ϕ1ϵ1L1S1 − σ2L2

ρ2S2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)

f4(x) �

C
+
1ϕ1ϵ1L1S1 + 1 − C

−
2( 􏼁ϕ2ϵ2L2S2 − σ1L1

ρ1S1
S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S1 − S2⟶1( 􏼁

C
−
2ϕ2ϵ2L2S2 + 1 − C

+
1( 􏼁ϕ1ϵ1L1S1 − σ2L2

ρ2S2
S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 − S1⟶2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

Furthermore, the switching manifold is defined as

Σ1 � x ∈ R4
: S1 − αT � 0􏽮 􏽯,

Σ2 � x ∈ R4
: S2 − αT � 0􏽮 􏽯.

(28)

It is worth to mention that, due to parameter configu-
ration, the flow does not enter into switching manifold of
codimension two, and it can be seen in Section 3.4.1 for more
details. By solving f ±Σ1,2

� 0, we found that there exists an
equilibrium point outside the sliding region, and thus, the
system does not have pseudoequilibrium points. Analytical
expressions of tangency points are

Lf1
h1(x) � ρ1S1

S1
T1

− 1􏼠 􏼡 1 −
S1
K1

􏼠 􏼡 − ϵ1L1 S2 −
1 − C

+
2( 􏼁ϕ2ϵ2S2
ϕ1ϵ1

􏼠 􏼡 � 0,

Lf4
h1(x) � ρ1S1

S1

T1
− 1􏼠 􏼡 1 −

S1

K1
􏼠 􏼡 − ϵ1L1 S2 −

1 − C
−
2( 􏼁ϕ2ϵ2S2
ϕ1ϵ1

􏼠 􏼡 � 0,

Lf1
h2(x) � ρ2S2

S2

T2
− 1􏼠 􏼡 1 −

S2

K2
􏼠 􏼡 − ϵ2L2 S2 −

1 − C
+
1( 􏼁ϕ1ϵ1S1
ϕ2ϵ2

􏼠 􏼡 � 0,

Lf2
h2(x) � ρ2S2

S2
T2

− 1􏼠 􏼡 1 −
S2
K2

􏼠 􏼡 − ϵ2L2 S2 −
1 − C

−
1( 􏼁ϕ1ϵ1S1
ϕ2ϵ2

􏼠 􏼡 � 0.

(29)

Because αT is the decision threshold for both commu-
nities, then we can replace S1 and S2 in the above equations
since it is supposed that the decision-making threshold is
equal in both communities. Next, we can solve for L1 and L2
to graph sliding regions, see the yellow región in Figure 2.

3.4. Dynamics of Exchange between Communities with One
Decision Level. From the system defined by the vector fields
presented in equations (24)–(27), we will present the results
of the simulations carried out under the following condi-
tions, which represent the exchange policy between the two
communities:

(i) Similar parameter configurations are considered
between the two communities that exchange their
resources, except in the case of the effective ex-
traction rate and regeneration rate of renewable
resources of each community

(ii) It is assumed that the effective rate of extraction of
the second community ϵ2 is high in consideration of
that defined for the first community so that, by
depleting its resources more quickly, it does not
count on the cooperation of the community one,
and it will collapse and disappear (as in the case of
high extraction of resources from the isolated
community presented in Section 2).

(iii) It is assumed that the renewable resources of each
community are regenerated at different rates, that is,
ρ1 ≠ ρ2. *is is to suggest that the physiographic,
climatic, and productive conditions of the two
communities are not necessarily the same, and each
one has its complexity.

(iv) It is assumed that the switching regions that define the
decision thresholds of the communities are in the
same percentage value of resources since they are
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framed in the same collaboration policy, guaranteeing
that their exchanges occur under equal conditions.

(v) Whenever a community is at the deficit threshold,
the collaboration policy says that the community at
the surplus threshold will cooperate with up to a
certain percentage of its resources, indicating that
cooperation only occurs in one direction.

(vi) If the two communities are at the same threshold,
the exchanges C1 � C2 � 1 are closed, leaving them
as if they were isolated communities. In the case
where they are at the surplus threshold, the ex-
change would not be necessary, while in the case
where they are at the deficit threshold, the exchange
would not be probable since the communities would
be putting at risk the little resource that they have
left to sustain their populations.

*e initial condition of the simulations is found in the
surplus thresholds for the two communities so that there is
room to show resource management errors, represented in
their extraction measures in contrast to the resource

regeneration capacity and how a policy of cooperation based
on exchange becomes an alternative for the community on
the threshold of deficit.

*e simulations presented show the results for parameter
arrangements that led to obtaining periodic and chaotic
behaviors (see Section 3.4.2), which are verified in the pro-
jections of the steady-state diagram presented in Section 3.4.3.

*e general parameter values used in these simulations
are σi � 0.14, ρ1 � 0.03, ρ2 � 0.04, Ti � 700, Ki � 12000,
ϵ2 � 7e− 5, and ϕi � 0.4. *e initial condition considered was
(L1, S1, L2, S2) � (2000, 10400, 2500, 8600), the values for
the exchange decision through the switching regions were
set at 30%, and the exchange rate defined when the com-
munity i cooperates with the other was 25% (i.e.,
1 − Ci � 0.25, i � 1.2).

*e effective extraction rate ϵ1 is taken as a control
parameter to perform the steady-state analysis presented in
Section 3.4.3. With this configuration, it is avoided to reach
the switching manifold of codimension two, which corre-
sponds to the intersection between the two switching
manifolds Σi of codimension one, described in equation (14).
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Figure 2: Periodic behavior induced by switching regions for ϵ1 � 4.7e−5.
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To present the simulations of this 4-dimensional system,
3-dimensional projections were used to allow the switching
manifolds to be adequately visualized. It should be under-
stood then that the switching regions will appear with a
smaller dimension than they have. *is was achieved by
using the spaces s1 − L1 − s2 and s2 − L2 − s1. Also, it was
considered that the colors facilitate the reading of the
simulations. *e three-dimensional projection of the
switching region Σ1 at h1 � 0.3 is colored blue, while the
region Σ2 at h2 � 0.3 is colored orange. *e sliding regions
were drawn in yellow. *e trajectory in orange corresponds
to that defined by the vector fields fi, in what we have called
the “thresholds,” while in blue and green, to contrast with
the colors of the switching regions and the projections of the
landslide trajectories.

*e corresponding time series of the resource variables si

and the signal of the exchange variable Ci were added to the
three-dimensional projections, considering that (1) the so-
lution for the case of communities is drawn on a continuous
line coupled, (2) the dotted line shows the trajectory of the
case of communities that evolve in isolation Ci � 1, and (3)
the colors correspond to the colors used in the three-di-
mensional projection.

3.4.1. Periodic Behavior. For the first simulation, it has been
considered to compare the behavior between two com-
munities under the effects of two scenarios: (1) noncoop-
eration and (2) cooperation, considering a relatively low
extraction rate from community one ϵ1, see Figure 2.

In the noncooperation scenario, presented through
dotted lines in the time series of Figures 2(c) and 2(d), it is
shown how the first community has reached a nonzero
equilibrium value of its resources, while the second has
disappeared.

In the cooperation scenario, a 1-periodic behavior is
obtained with sliding over the switching manifold of
community two Σ2, which means that, through the exchange
of resources, community two no longer disappears,
achieving that the two communities are preserved in time,
through a periodic cycle, see Figures 2(a) and 2(b).

*e black signal, in Figures 2(c) and 2(d), shows the
behavior of exchanges between communities; while com-
munity 1 does not receive resources (C2 �1), community two
does through periodic pulses that satisfy their noncontin-
uous needs (0.75<C1 < 1).

In this way, due to the configuration of the system, we see
that the management of the socio-ecological system shown
by community one, in scenarios of cooperation or nonco-
operation, allows it to be maintained over time, while
community two only achieves it through cooperation.

*e exchange avoids collapse and leads to a process of
recovery of the community in deficit, which is not im-
mediate, since it must overcome a delay that occurs while
sliding over the switching manifold, possibly related to the
recovery of its resources and education for cultural
transformation and sustainable management, to finally
appreciate recovery and stop dependence on the other
community.

3.4.2. Chaotic Behavior. For the second simulation, again, it
has been considered to compare the behavior between the
two communities under the scenarios of (1) noncooperation
and (2) cooperation, but now a relative extraction rate of the
one ϵ1 community has been considered high, see Figure 3.

In the noncooperation scenario, which is shown through
dotted lines in the time series of Figures 3(c) and 3(d),
isolated communities obtain opposite effects; the first
community reaches the equilibrium of its resources despite
having considerably increased its resource extraction rate ϵ1,
while the second community disappears.

In the cooperation scenario, chaotic behavior is obtained
with sliding over the switching manifold of community two
Σ2, which means that, through the exchange of resources,
community two no longer disappears, achieving that the two
communities are preserved in time, with their trajectory
confined to a region of state space, see Figures 3(a) and 3(b).

*e black signal, in Figures 3(c) and 3(d), shows the
behavior of exchanges between communities; while com-
munity 1 remains without receiving resources (C2 �1),
community two continues depending on the other com-
munity, but now, through irregular pulses that satisfy their
noncontinuous needs (0.75<C1 < 1).

Under this system configuration, the management of the
socio-ecological system shown by community one, in sce-
narios of cooperation or noncooperation, again allows it to
be maintained over time, while community two only ach-
ieves it through cooperation.

In the cooperation scenario, for the extraction value
relatively higher than the one used in the periodic system
configuration of Section 3.4.1, the exchange once again
avoids collapse and leads to a process of recovery of the
community in deficit but this implies that the contributing
community enters into a chaotic behavior confined to states
that do not expose their resources and that the receiving
community oscillates between the thresholds of surplus and
deficit, achieving this long in the first. It draws the attention
of community two that, leaving the deficit threshold, they
must slide in the switching manifold during irregular
(chaotic) periods that perhaps express different levels of
consciousness, although their extraction policy is the same.

3.4.3. Steady-State Analysis. In this final simulation, a set of
diagrams containing the steady-state mappings are pre-
sented, obtained for each of the state variables by the var-
iation of the parameter ϵ1 in the range of values where
resource exchanges occur between the communities, in-
volving sliding over the switching manifold Σ2.

For the elaboration of this diagram, a total of 3000
simulations were carried out from an initial condition
centered on (L1, S1, L2, S2) � (2000, 10400, 2500, 8600), in
which each simulation took a value of the ϵ1 parameter in the
range of 4.6 × 10− 5 to 5.5 × 10− 5. *is range of the control
parameter was chosen for convenience, for two reasons: (1) it
is the range in which sliding occurs over the switching
manifold Σ2, giving rise to the periodic and chaotic be-
haviors that were already mentioned in Sections 3.4.1 and
3.4.2, and (2) in this range, the system does not reach the
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codimension two switching region. *e simulations were
carried out until reaching the time t � 10, 000, sampling the
maximum and minimum values of the last 1000 units of
time, in consideration of the changes in the behavior that the
switching manifold makes on the periodic behavior of the
orbits, as shown in Figure 3(d). In this way, the simulations
presented in Figure 4 were obtained, where the represen-
tations of the upper steady-state, in green, map the maxi-
mums of the solution, while those of the lower part, in red,
map their minima.

In this analysis, as ϵ1 increases in the selected range, the
system shows changes in periodicity and chaos in the dy-
namics of the behavior of community one (population and
resources), without deviating it from the surplus threshold,
see Figures 4(a) and 4(c), while community two exhibits
behaviors of period one for the population and periodicity
and chaos for resources when they are at the deficit
threshold, see Figures 4(b) and 4(d). For the final interval of
the analysis, the exchange was found to occur without
sliding, through orbits of period one.

4. Discussion of Results

In this section, the results obtained will be discussed to un-
derstand (1) the effect of the variation of the extraction ca-
pacities in an isolated community, using a two-dimensional
continuous model, see Section 2, and (2) the effect of the
exchange of resources between two communities, based on a
Filippov system, see Section 3, considering that, to have a first
approximation of sustainability as conservation of well-being
in a territory, landscape, or community, it is assumed that well-
being is having renewable resources, which, as mentioned in
the introduction, oversimplifies a plausible definition of well-
being, but allows the presentation of the possibilities of the
interpretation proposed in this article for sustainability.

In the first place, regarding the effect of the variation in
extraction capacities in an isolated community, it is notable
that, following the bifurcation diagram in Figure 1, the
dynamics of the system involves four prospective scenarios:
(1) negligence: in which the extraction is insufficient to
sustain the population, (2) harmony: in which the extraction
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Figure 3: Chaotic behavior induced by switching regions for ϵ1 � 5.3e−5.
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and recovery of resources are in equilibrium, (3) instability:
in which there are continuous oscillations between scarcity
and abundance, and (4) collapse: in which the excess in the
extraction of resources leads to the disappearance of the
population and the resources.

In this case, the conservation of well-being could only be
appreciated in the harmony scenario, through the invariant
set of equilibrium point type that the system defines for a
certain level of extraction, so it is concluded that a territory,
community, or landscape isolated, and it is only sustainable
if it finds the balance between its population and the ex-
traction of resources that it does for its maintenance, in
consideration of the regenerative capacity of the resources.

*is result, and its corresponding scenarios, can be
compared with the current situation of humanity as a large
community in a space with limited resources: planet Earth,
with only the scenario that we call harmony being sustainable.

Second, on the effect of the exchange of resources between
two communities based on a Filippov system, the results have
allowed us to see through simulations and the dynamics
emerging from the interaction between two communities that

share their resources in pursuit of well-being, through invariant
sets such as periodic orbits and strange attractors, who allow us
to conclude that sustainability can take different invariant
forms within the notion of well-being, in addition to the
equilibrium form shown for an isolated community.

*e reason why the exchange between the two com-
munities reaches sustainability under these multiple ge-
ometries (equilibrium point, periodic orbit, or strange
attractor), although one of the communities has been
configured not to be sustainable without the exchange, is as
follows: (1) there were clear conservation policies (repre-
sented through the switching manifolds) and (2) the policies
had perfect control (the system was programmed deter-
ministically). However, achieving sustainability through
exchange makes the consuming community stabilize while
the resource-rich community becomes unstable.

*is is where an interpretation of well-being as several
renewable resources fails because the instability of the stock
reflects the socio-ecological instability of the one who con-
tributes the resources to ensure that the community at the
threshold of deficit can satisfy its demands for resources,
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Figure 4: Steady state maps.
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without questioning or regulating the needs of the extractivist
community, meaning that the contributing community
maintains the stability of the relationship, despite the stability of
its other socio-ecological dimensions. In other words, satisfying
the needs of an extractive community despite another com-
munity can generate socio-ecological instabilities in the com-
munity that it contributes (violence, tyrannies, wage abuses,
inhumane living conditions, etc.?). So, speaking of sustain-
ability, the definition of what is well-being must be multidi-
mensional, involving at least people, animals (domestic or
livestock), and ecosystems.

About sliding, it shows how a community is trapped in a
set of transition states between one threshold and another
while regulating the population. *is can be derived from a
biological impulse of humanity that, without clear controls,
tends to deteriorate its well-being, falling into the tragedy of
commons ground.

*e values of the exchange constants, together with the
values of the extraction rates, proved to be conditioning factors

for the development or deterioration of the communities,
suggesting that they should be careful with their definition,
before proclaiming a national or international exchange policy.

5. Conclusions

*e exchange avoids collapse and leads to a process of recovery
of the community in deficit, which is not immediate, since it
must overcome a delay that occurs while sliding over the
switching manifold, possibly related to the recovery of its re-
sources and education for cultural transformation and sus-
tainable management, to finally appreciate recovery and stop
dependence on the other community.

*e approach made in this paper from mathematical
modeling for the analysis of the sustainability of territories,
communities, and landscapes, between which theremay ormay
not be exchanges, understanding that sustainability occurs
when well-being is a law of conservation of the spatial unit of
analysis, allows to understand that
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Figure 5: Steady state for economic cooperation between two communities when you have two switching regions. Parameter setting is
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(i) Without exchange possibilities, a population will
depend on the extraction rate and the regeneration
capacity of its resources, to prevail or disappear.

(ii) *e exchange of resources is key to the survival of the
human species, without this implying sustainability.
*is cooperation uses redundancy in the other to
maintain itself.

(iii) A definition of well-being limited to the number of
resources as a need can generate undesirable in-
stabilities in the contributing socio-ecological sys-
tems unless that is the sustainability that we wish to
establish.

(iv) Sustainability can be visualized in the attraction
basins of the invariant sets of socio-ecological
systems whose states do not include null values, so it
can be said that there are sustainabilities and that
sustainability analyzes have many opportunities
from modeling and analysis with Filippov systems
and bifurcation theory.

6. Future Research

*e coupling introduces two new parameters into the sys-
tem, hi and Ci. As future work, it is proposed to evaluate the
effect that varying one of the two has on the exchange
dynamics, given that the change of the switchingmanifold or
the exchange values, would allow evaluating which would be
the threshold that leads to the best performance of the
system, even if those values are not equal.

It is also proposed to consider the existence of more than
one switching region for the definition of the decision levels
of the system, as proposed in Figure 5.

Finally, it is proposed to establish sets of needs that allow
defining in a multidimensional way the well-being of the
territory, community, or landscape and promoting socio-
ecological arrangements that allow us not only to have life
but to have it with dignity.
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